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An efficient shooting method is presented for the numerical solution of a discrete 
Poisson equation on the surface of the sphere. The solution is computed via two-dimen- 
sional shooting in the physical domain while the “missing initial conditions” needed to 
start the shooting are obtained in a one-dimensional setting in the Fourier domain. 
For a computational grid with J x J grid points, the operational count of this method 
is of O((p/m) log, J), where m is the number of grid points within each shooting sub- 
range. The actual count is, for most practical purposes, leas than 26 arithmetic operations 
per grid point. Stability of the method is a problem; this problem, however, can be 
overcome by the use of the multiple shooting technique. Numerical examples are given 
to demonstrate the applicability of the procedure. 

1. I~R~DuCTI~N 

Consider the Poisson equation on the surface of a sphere of radius r, 

1 
( asin ea + 1 a2 

r2 ae - ae sin aA2 1 u = f(e, A). (1.1) 

Here 0 < 0 < T is the colatitude and 0 < h < 2~ is the longitude. The following 
features of (1.1) may be noted. (a) It has coordinate singularities at the poles 
0 = 0 and 0 = 7~. If local values of u are to be sought for all (0, A), these singu 
larities will first have to be removed in some way. (b) Even with the singularities 
removed, unless one additional constraint is imposed, (1.1) does not have a unique 
solution. (c) If one additional piece of independent information is available, we 
may consider (1.1) to be a boundary value problem. A unique solution can then 
be had by ensuring that f (0, h) satisfies the compatibility condition 

I f(0, A) ds = 0. 
s 

Here ds = sin 0 de dh; and the integration is over the entire surface of the sphere S. 
As a result of observational or numerical errors, f(e, X) in practice often does not 
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satisfy (1.2). In such cases, f(0, h) may be perturbed by a constant so that (1.2) 
holds, The resulting solution is then a least squares solution of the unperturbed 
system (1.1) (e.g., [4]). 

The conventional direct method for the numerical finite-difference solution of 
(1.1) makes use of the Fourier transform to reduce the two-dimensional equation 
to a number of one-dimensional difference equations. These one-dimensional 
equations are solved by Gaussian elimination. The desired solution to (1.1) is 
then given by the inverse transforms of the solutions to these one-dimensional 
equations (e.g., [4, 51). We shall describe here a procedure to solve (l.l), which 
makes use of a shooting method for two-point boundary value problems. The 
shooting itself is conducted in the physical domain on the surface of the sphere. 
Only the “missing initial conditions” are computed in the Fourier domain. For 
a computational domain with a large number of grid points, this method is more 
efficient than the traditional direct method because it reduces the number of data 
points to be Fourier transformed to that of the number of starting points. It has 
the disadvantage of being numerically unstable. This difficulty, however, can 
be alleviated by the use of multiple shooting. 

We shall set the stage in Section 2 for the use of this method in one-dimensional 
problems. The application of the method for a finite difference solution of (1.1) 
is developed in Section 3. Computational details and sample numerical results 
are given in Section 4. 

2. A FINITE-DIFFERENCE APPROXIMATION 

Since we are interested mainly in the application of the procedure, we shall 
exclude from considerations the coordinate singularities at the poles by adopting 
a discrete spherical grid proposed by Merilees [3]. In this grid, the poles are not 
grid points, and we do not consider explicitly values of u at the poles in terms of 
(1.1). For a computational domain with 21 and J grid points along the 8 and h 
coordinates, respectively, a five-point centered-difference operator for the Laplacian 
leads to the following difference equation for (1.1). 

ei = (i - g) de, 
hi = jdh, 

b, = sin ei+(l12) 0 Ae2 sin ei ’ 
de = 421, 1 
Ah = 2rrJJ, ci = Ah2 sin2 (ji ’ 
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Together with the “buundary conditions” [3] 

u~.j = %.(Jlz)+j Y 1 G.i< J/2, 

= %-(J/2), (J/2) + 1 < j < J, 

z=z 
%.j-(J/z) 9 (J/2> + 1 < j < J, 

(2.la) 

and the auxiliary conditions 

u&o = u&J, 
O<i<21+1, (2.lb) 

u&J+1 = h.1 9 

the system (2.1) is then closed. This linear algebraic system is, however, singular. 
We shall see later, in the discussion of (2.7), that a unique solution exists if one 
additional piece of information is available. 

To solve (2. I), define 

U( = 

R= 

, 

-1 \ 

\ \ 
-1 

,-1 -1 2 i 

. 

Then (2.1) becomes, for 1 ,< i < 24 

aani-l - (ai + bc) Ui + bPi+I - CiRUi = fd . (2.2) 

Note that although the boundary conditions II,, and uzr+l are defined via (2.la) 
as a function of II, and uSI, respectively, we do not have to consider them because 
both a, and bzI are equal to zero. Furthermore, the matrix R, although singular, 
is real symmetric and is therefore orthogonally simiar to a real diagonal matrix D, 

D = P-IRP. 
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Here the diagonal elements of D are the eigenvalues dk,lc of R, and P is a J x J 
orthogonal matrix whose columns are the normalized eigenvectors associated with 
d k.k , i.e.9 

4.k = 2(1 - cos hk), 1 bk<K, 

cos jA, , 1 <k<(K/2)-1, 
2 112 

Pj.k = 0 
(cos jhk)/2112, k = K/2, 

1 -sin jhk, (K/2)+1 <k<K-1. 
1/2lJ2, k = K, 

where K = J. 
If we perform a discrete Fourier transform on ui and fi , 

wi = p-‘u. 2, gj = P-lfi ) 

where 

9 1 <j<J, 

(2.3) 

We may write (2.2) in a space-Fourier domain, for 1 < i < 21, 

a,wi-1 - (ai + bi) Wi + biwi+, - CiDWi = gi . (2.4) 

Thus, at latitude Bi , for example, the kth Fourier component equation of (2.4) is 

WV-i, k - (ai + bi) Wi.k + btWi+,,k - Cidk.kWi.k = g6.k. (2.5) 

Noting that wj,k is the kth discrete Fourier component of Ui , we now group 
wi,k by components and define 

/ W1.k Wk = 
Equation (2.4) becomes, for each 1 < k d K, 

Tk”‘, = gk > (2.6) 
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where 

ei.k = -(G -b bi -k C&k.,)* 

For k < K, Tk is nonsingular, and (2.6) can be solved efficiently by Gaussian 
elimination. For the case of k = K, since dK,K = 0, the system 

TKWK = g, (2.7) 

is singular and thus has no unique solution. At this point, one may argue that since 
the solution for a Poisson equation on the surface of a sphere can be determined 
only to within an additive constant, we are free to pick arbitrarily a value for wIsK 
to solve (2.7). 

Thus, the traditional direct method of computing a finite-difference solution 
for the Poisson equation is to Fourier-decompose along latitudes the forcing 
function &, solve by Gaussian elimination a tridiagonal system for each of the 
Fourier components, and finally Fourier-synthesize the solutions of these tri- 
diagonal systems to yield the solution for (2.1). If the labor of computing dksk 
and pj,k is ignored, such a method takes, for a domain of 21J gridpoints, approxi- 
mately 2IJ(lO + 4 log, J) arithmetic operations. We shall see in Section 3 that 
(2.1) can be solved more efficiently, though perhaps less accurately, by the use of 
a shooting method. 

3. METHOD OF SOLUTION 

Tridiagonal systems such as (2.6) can be solved easily by a shooting method. 
We shall develop here an algorithm for such a method. Since the method is to be 
applied for all k in (2.6), the subscript k will be dropped for brevity. 

Pick an arbitrary value pi1 and consider it to be the value of w1 in (2.6). Define 

Zl = eir, - WI, (3-l) 

where Z1 is the error committed in taking 8, as the correct value of wl. 4ir, is then 
given by 

6, = (a - elWbl . 
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In general, for 2 < i < 2Z- 1, we have from (2.6) 
” 

we1 = ( gi - a&i-l - e&i)/bi . (3.2) 

After ti,,, , ti,, have been computed, we may calculate 

(3.3) 

which is, in general, different from g,, . Thus the quantity dg,[ = gil - g,, 
represents the cumulative error due to EA1 . Since for a given coefficient matrix T 
in (2.6), the amplification rate of P, is defined, we can compute :I from a knowledge 
of Ag,, . Once & is determined, the solution to (2.6) may be obtained by the appli- 
cation of (3.2) for the second time, starting with the correct value of w1 = 6, - e, . 

To compute 2,) we first determine its amplification factor from a marching 
solution of the homogeneous equations to (2.6), 

Ta = 0, (3.4) 

where a is a 21 x 1 vector. One solution to (3.4) can be had by setting 01~ = 1, 
which permits us to compute (Ye = -ee,a,/b, . And in general, for 2 < i < 2Z- 1, 

%+1 = -(aiai-l + eicui)/bi . 

After LQ, has been computed, En1 is given by 

(3.4a) 

And the problem is then essentially solved. 
Unfortunately, the method given here, although efficient, is also numerically 

unstable for problems of more than one dimension because of the large ampli- 
fication rate for Eni . In such cases, it is often desirable to use the so-called multiple 
shooting technique, in which arbitrary values at more than one point are adopted 
to start the first shot. Such an extension of the method in essence divides the range 
over which the shooting is to be conducted to smaller subranges. Parallel shootings 
are then conducted within each subrange. In terms of algebra, this is nothing more 
than the partitioning of a system such as (2.6) into a number of subsystems and 
then the solving of these subsystems simultaneously by shooting. For pedagogic 
purposes, we shall develop here in detail a two-subinterval multiple shooting 
algorithm. Extension of the algorithm for a computational domain with a larger 
number of subintervals is straightforward. 

Consider the case in which parallel shootings are to be conducted from both the 
north and south polar regions toward the equator. We may then partition (2.6) 
into two simultaneous systems. 
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(3.6a) 

(3.6b) 

where a’ = gI - hw% , g;+, = a+, - =I+lw S. Notice that the artificial internal 
boundary conditions w& and wrs must satisfy the auxiliary conditions 

wp = WI ) 

N 
w+1 = WI,,. 

(3.6~) 

It is through these auxiliary conditions that (3.6a) and (3.6b) are coupled. This is 
because the boundary point of one subinterval is also an interior point of a 
neighboring subinterval. Furthermore, the coefficient matrices in (3.6a) and (3.6b) 
are identical because the partitioning of (2.6) into (3.6a) and (3.6b) effectively 
divides a sphere into halves at the equator. The homogeneous equations associated 
with these systems are identical. We thus have 

T’a = 0, (3.7) 

where T’ is the coefficient matrix in (3.6) and a is now a I x 1 vector. Our task 
is to solve (3.6) simultaneously using the shooting method. 

To do this, pick arbitrary values fiI and s,, ; and consider them to be the values 
of w1 and wzr in (3.6). Define 

(3.8) 

Thus Z, and P,, are, respectively, the errors committed in taking flI and &I as 
the correct values for w1 and wzl. With these arbitrarily picked NI and & , we 
may now compute a marching solution to (3.6): 

ai+, = ( gi - a$-, - e,l(T,)/b, , 2,(i<I, 

si-, = (g, - e& - bi$+,)/ai , 21--l>i>l+l, 
(3.9) 
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where fiz = (g, - e,fiJb, and s,,-, = (g,, - e2,&)/a2, . Had the marching 
solution satisfied the auxiliary conditions (3.6c), 

9, = H,, 
a,+1 = L> 

we would have had the correct solution to (3.6), namely, 

wi = & ) 1 <i<z, 
= si, 213i>Z$l. 

Since fil and s,, , the starting values for w1 and w2,, have been chosen arbitrarily, 
conditions (3.6~) are usually not satisfied. We know, however, that in the process 
of marching for fi5 and $, the errors due to $ and Enp, are amplified according to 
(3.7). Thus the errors in N, and 9, at latitude 0, due to El1 and Bz, are 

a,& = fi, - w, ) 
%+1$2, = 31 - WI 3 

where CJQ+~ = -(a,c+-l - ep,)/b, . On eliminating w, , we have 

a,& - 4 
%+1E21 = iv, - 3, = Aw,. (3.10a) 

Similarly, fi,,, and s,,, at latitude 0,+, give a second equation for the unknowns 
Z1 and EA2,, 

%+A - &!,8,, = %+1 - &I,, = Aw,+l . (3. lob) 

Thus once the coefficients 01, and CL,+~ have been determined via (3.7) in a manner 
similar to (3.4a), ;I and P,, can be computed via the 2 x 2 system (3.10). In the 
cases where the number of subintervals is large, the corrections to the arbitrarily 
picked initial conditions may be computed more efficiently by solving a number 
of tridiagonal systems. For example, for the case of the two-subinterval shooting, 
we may compute g1 and O,, by solving in sequence the systems 

/el bl \ 

a,\\ 
\ e,-, b,-, 

\ aI f3’ 
bl 

el\\ a2 

\ 
e,-1 b-1 

\ a, e; 

0 

i : i 
0 ' 

(3.1 la) 

gr” + G+1 

(3.11b) 

iI / \ a* 
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Here 

eI ’ = eI -k bI, 

e; = eI - bI, 

e* = bd%, - %+A 

S&l = e+,m - &l. 

It should be emphasized that although the method has been developed here, for 
illustrative purposes, in a one-dimensional setting, it is not recommended for one- 
dimensional problems because it is no more efficient and yet may be less accurate 
than the standard Gaussian elimination. The virtues of the method vest in its 
ability to handle multi-dimensional problems efficiently. 

4. COMPUTATIONAL DETAILS AND NUMERICAL EXAMPLES 

The application of this technique to the discrete two-dimensional problem (2.1) 
makes use of the following observations. Since a, = 0 and bzI = 0, if u,,~ and 
u 2I.j are known, we may then compute u,,~ and ugI--l,j for all 1 < j < J. In general, 
we may compute, for 1 < j < J, 

%+l.j = [fi,j - Wi-1.j + (G + bi + 2c,) ui,j - ci(ui,j-l + ui,i+l)]/bi 3 
2<i<I, 

Ui-1.j = M.i + (ati + bi + W ui.i - biUi+l.f - C(U-I + u~,j+dl/ai 3 
21-13i>1+1. 

Thus the problem of solving (2.1) becomes that of obtaining correct values for 
u1.j and u2I.j , 1 < j < J. This may be accomplished by the algorithm 

(a) Set N1.j = 0, SzI,j = 0, 0 < j < J + 1. 

C-9 
N2.j = [fi.j + (bl + 2~1) N1.j - cl(Nl,j-1 + N~,j+Al/b 3 
&.o = NW 7 

&+I = %I. 
(b’) 

SU-1.j = IfiI,j + (%I + 2c21) s21,j - Cds21,j-1 + S21.j+1>1/“21 3 

‘%I-,., = &I-1.J 2 

&I-,*,,, = &-1.1 * 
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(c) Compute, for 2 < i < Z, 
N f+l.s = Ki - aiN,-,, + (ai + b, + 24 Nt.5 - ci(Nw + Ni,~+,Wi , 

1 <j<J, 
Ni+l,o = N~+I.J 3 

Ni+l,J+l = N~+I,I . 
(c’) Compute, for 2Z > i 3 Z + 1, 

Sd-1.j = [fr.j + (ai + bi + 2~3 $.j - bG%+l.j - 4&.,-l + si,j+dl/ai 9 
1 <j<J, 

Lo = Sf-l,, , 
si-LJ+1 = si-1.1 * 

(d) Compute, for 1 < j < J, 

Au,,5 = N1.j - SIgj > 
AuI+l,i = NI+l,j - SI+~,, . 

(e) Fourier decompose, via (2.3), Au,,~ and Au~+~,~ to give Aw,,~ and Aw,,,,, . 
(f) Compute, for 1 < k < K - 1, &!I,, via (3.7) as indicated in (3.4a). 
(g) For 1 < k < K - 1, COIIIpUte &1, and &l,k Via (3.10) or (3.11). For 

k = K, & = 0, &,K = -Awl,, . 
(h) Fourier synthesize, via (2.3), & and I$l,k to give Q and eZI,5 . 
(i) Compute, for 1 < j < J, the missing initial conditions 

(j) Shoot for the second time via steps (b) and (c). This time start with the 
correct values for u~,~ and Uzl,j from step (i) above. 

Thus system (2.1) can be solved in two shots. The first misses the targets by 
Au,,~ at latitude 8, and AuI+,,j at O,+, . These missed “distances” enable us to obtain 
the correct u~,~ and Uz1.j , to be used as the starting values for the second shot. 
It should be emphasized that this is not an iterative scheme in which an iterate 
at each iteration is altered to approach an asymptotic value. Instead, (2.1) is 
viewed here as an initial value problem, with initial conditions specified only 
implicitly. Steps (a) through (i), above, enable us to obtain explicitly the values 
of these “missing” initial conditions. With these initial conditions known, we then 
solve the initial value problem in step (j) by marching. 

Notice that the Fourier decomposition in step (e) permits us to consider each 
Fourier component as a one-dimensional problem in the computation of EA1,& 
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and EnZl,k . The Fourier synthesis in step (h) permits us to conduct the actual shooting 
in a two-dimensional physical domain. The efforts made to reduce a two-dimen- 
sional problem to K one-dimensional problems, as discussed in Section 2, are thus 
justified. Such a formulation, while permitting us to discuss the shooting method 
in a one-dimensional setting in Section 3, nevertheless, allows us to conduct the 
shooting itself in a two-dimensional physical domain. 

The order of arithmetic operations involved in each of the steps above is listed 
in Table I. Here the counts are given for a multiple shooting algorithm in which m 

TABLE I 

Order of Arithmetic Operations for Various Steps in the Algorithm 

Step 
Order of 

operations 
Approximate number 

of operations 

O(J’) 
O(J’l4 
WJW 1% J) 
O(J’) 
O(J’) 
OKJVd log, J> 
O(JW) 
O(J’) 

83” 
JSjm 
Z(J’/m) log, J 
2.P 
4Je 
2(JB/m) log, J 
Ja/m 
858 

is the number of grid points wthin each shooting subrange. For convenience of 
comparison with other existing direct methods, the operation counts have been 
given for the case of a J x J square grid. It can be seen from this table that this 
may be considered as an O((Ja/m) log, J)method since steps (e) and (h) both require 
O((J2/m) log, J) operations. At the suggestion of one of the reviewers, the approxi- 
mate number of arithmetic operations for each of the steps is also given in Table I. 
We see that the approximate total number of operations is 

total counts = [22 + (4 log, J)/m + 2/m] J2. 

Note that for most practical purposes, the first term inside the square brackets 
usually dominates. For example, for m = 8, even with J = 256, the second term 
inside the brackets, (4 log, J)/m, has a numerical value of 4. This is only about 
20 percent of the first term. Thus, we may say that for most practical purposes, 
this method requires a total of less than 26J2 arithmetic operations for a J x J 
grid. Compared with the approximate operation count of (10 + 4 log, J) J2 in 
the traditional direct method outlined in Section 2, it is apparent that the multiple 
shooting method is more efficient for cases with J > 16. Bank and Rose [2] 

581/22/Z-7 
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have recently given an O(P) method for constant coefficient boundary value 
problems in two dimensions. For the linear algebraic system (2.1), their method 
requires, however, 0(J2 log,(J/m)) operations [ 11. 

To gain some insight into the numerical properties of the procedure described 
in Section 3, test computations have been conducted for the solution of (2.1). 
Since we are interested here only in the effect of the accumulation of the machine 
round-off error and not the discretization error of the difference equation, we 
created a set of true solution for Q in (2.1) by computingf,,i from 

Here values for Ui,j are obtained from a random number generator and have been 
subjected to the constraint xi xi Ui,j = 0 so that& satisfies the discrete form of 
the compatibility condition (1.2) 

1 sin e,(zh,,) = 0. 
z j 

(4-l) 

With the forcing function fi,i computed in this manner, a normalized error norm 
defined by 

II E 112 = II u - v llzlll v 112 . (4.2) 

may then be considered as a measure of the accuracy of the numerical procedure. 
The number of digits of accuracy in u is then given by 

Z = -log,, II E II2 (4.3) 

Several sets of computations have been made for various values of m. For the 
two-subinterval results reported here, we start the shooting from both poles and 
march toward the equatorial regions. Sample results are tabulated here in Table II 

TABLE II 

Numerical Error as a Function of the Length of the Shooting Subrange m 

m Z” II Ellz E(m=) 

2 12.6 2.6 x lo-‘* 4.9 x 10-10 
3 11.4 3.6 x 10-l” 6.1 x lo-l2 
5 9.5 3.0 x 10-10 4.2 x lo-lo 
8 6.9 1.3 x 10-1 1.9 x 10-7 

12 3.5 3.2 x IO-* 7.2 x 1O-4 
16 0.1 8.7 x 10-l 1.7 x 10-O 
160 1.9 1.2 x 10-e 2.5 x lo-” 

(1 Z: Number of digits of accuracy in computed solution u. 
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in terms of 2, j/ E [I2 and E(max), the maximum error over the entire computational 
domain. It is obvious that the accuracy of this scheme depends critically on the 
length of the shooting subrange m. This is to be expected since, as may be seen 
from Table III, the maximum amplification factor for 2 (when dk,k = 4.0) increases 
by 12 orders of magnitude over 16 grid points. Thus just as E~,~ and ezl,j are ampli- 
fied by this factor in a distance spanned by 16 grid points, so is the error due to 

TABLE III 

Approximate Values of the Maximum IX,+, 
(When dkmk = 4) as a Function of Z 

Z Maxh+d 

2 1 x 101 
3 7 x 10’ 
5 3 x 108 
8 7 x 106 

12 1 x 109 
16 3 x 1012 

the machine round-off. It is of interest to note that the length of the shooting 
subrange m plus Z, the number of correct digits in u is roughly equal to the number 
of digits of accuracy of the machine used for the computation. Thus for example, 
for m = 8, we have Z = 6.9. (Our CDC 6600 has roughly a 15-digit accuracy.) 
In one experiment, values of the amplification factor LX~ alone were computed for 
the case of m = 16 using double-precision arithmetics in the CDC 6600. The 
results are given in the last row of Table II. We see that this reduces the error norm 
only by two orders of magnitude. Thus, the possibility of increasing the accuracy 
of the scheme by computing accurately the amplification factors once and for all 
seems to have been ruled out. Perhaps the most effective way of ensuring accuracy 
is by the use of multiple shooting, choosing the subranges according to the accuracy 
requirement of the solution, and the numerical capability of the machine at hand. 
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